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Summary

In credit portfolio modelling the normal copula approach and multi-factor models have be-

come an industry-wide standard to describe the asset correlation structure. To calculate

the portfolio loss distribution for these models, due to its analytical intractability, in general

Monte Carlo methods, non-trivial numerical integrations, or structural simplifications have

to be applied. Still, for more than 3-4 factors especially determination of risk contributions

and optimisation routines become a very time-consuming endeavour. Aim of this paper is

to present a new factor reduction approach using a single underlying factor to calculate the

portfolio loss distribution. Focusing on risk contributions rather than asset correlations it

is shown that the portfolio correlation structure could be captured in just one factor to an

astonishing degree of accuracy. The paper outlines the basic idea and calibration of this

factor reduction approach, and for illustrative as well as realistic, heterogeneous portfolios

the new model is applied in the calculation of loss distributions and risk contributions. The

capabilities of this approach are further demonstrated when used in an optimisation setting.
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1. Introduction

In the last decade in credit portfolio modelling the normal copula approach and multi-factor

models have become an industry-wide standard to describe the asset correlation structure.

Allowing to construct mutual asset correlations between members of the portfolio as the

sum of dependencies on common external factors, the multi-factor approach represents a

very flexible and powerful modelling tool. If any drawbacks exist, one would argue, then it is

the fact that for every minute source of correlation an independent factor is to be added to

the model. To calculate the loss distribution for these multi-factor portfolio models, Monte

Carlo methods, non-trivial numerical integrations, or structural simplifications are applied.

Most practitioners, however, resort to Monte Carlo simulations, which work very well even

for the sometimes very large number of factors. This should be attributable to the fact

that for every instrument usually only a handful of factors have non-zero loadings, virtu-

ally reducing the integration dimensions in the Monte Carlo algorithm. However, difficulties

arise when statistics have to be calculated where in a reasonable time frame Monte Carlo

simulations are not accurate enough and are therefore no longer an option. For example

for risk contributions far in the tail, Monte Carlo results can be fairly volatile. This is

especially unwanted in optimisation algorithms, where such random fluctuations in the pa-

rameters are frequently punished with an immediate termination of the algorithm. To avoid

these drawbacks, a number of workarounds have been found. In some cases loss amounts

are ’blurred’ by some mixing distributions to ensure more continuous risk contributions of

instruments and thus reduce volatilities. Other approaches, based on a direct calculation of

the loss distribution, focus on a reduction in the number of underlying portfolio factors in

the numerical integration. This can be achieved either by just simplifying the factor model

per se, or by using a full factor model and then condensing the information contained in it

by some algorithm. In this article we want to present a new approach for the last type of

solution.

One of the most popular and widely applied factor reduction techniques should be the

Principal Components Analysis (PCA), as e.g. presented in a credit context in Andersen et

al. (2003). Having its origins in multivariate statistics, the underlying idea of the PCA is to

reduce the number K of variables observed for a set of individuals by using a small number

K∗ of linear recombinations. Simultaneously, one wants to transfer as much discriminating

power as possible, i.e. variation, from the old to the fewer new variables. Mathematically it

turns out that the linear transformations are simply the set of the K∗ Eigenvectors with the

largest Eigenvalues for the covariance matrix. This fact makes the PCA also easily applicable

in a credit framework. In credit portfolio modelling the PCA factor reduction works very

well, as long as the number K∗ is chosen large enough to really cover most of the portfolio
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correlation characteristics. If K∗ is not large enough, this approach has two important

shortcomings. The first is, because the PCA extracts ’the principal components’, the part

of the correlation matrix discarded usually still describes some correlation ’structure’. In

practice this means often, that systematically the features of small subsets are cut off, and

not just some random characteristics will get lost. You could compare this to the case where

in a linear regression an important variable is missing and therefore the errors are no longer

iid normal. We will give an example for this fact later on. The second problem is based

in the construction of the new factors. The factors are calculated using information solely

from the correlation matrix. Important figures like exposure sizes, default probabilities, or

loss given defaults do not enter the calculations. In the PCA all assets are treated equally.

However, as in the course of a factor reduction correlation information has to be discarded, it

would appear natural to weight large contributors to the loss distribution higher than, e.g.,

small highly rated assets. In conclusion, though PCA is an extremely powerful tool in the

context of multivariate normal distributions, as a factor reduction technique with respect to

the calculation of loss distributions it is not optimal.

In this paper a new factor reduction approach is presented particularly designed to preserve

as much information as possible for the loss distribution, while reducing the number of factors

needed to just one core factor. In section 2, the general idea is outlined and how a different

target function based on risk contributions could be defined to calibrate the new core factor

model. Section 3 demonstrates the performance of the approach in synthetic and realistic

data sets. The illustrative examples thereby include the calculation of loss distributions and

risk contributions, as well as the application in an optimisation framework. The paper closes

with a short discussions of open questions and future perspectives for this approach.

2. The Core Factor

This section shall outline the underlying idea of how to extract a single core factor from a

multi-factor model to approximate the loss distribution. In the following let us consider a

portfolio of N credit risky instruments or assets ai, i = 1, . . . , N , each with exposure Vi.

Let the probabilities of default (PD) of these assets be denoted by pi, i = 1, . . . , N . For

simplicity, let us assume that all assets are non-amortising with the same fixed maturity,

and all to have a loss given default of 100%. Further, suppose the respective instruments

follow a K-factor asset value model, as generally introduced by Merton (1974) or Vasicek

(1991). Let βik, k = 1, . . . , K denote the factor loadings for asset i. In this framework it is

assumed that an instrument or firm defaults when its asset value process Xi falls below the

firm’s liabilities or a certain default frontier. The corresponding default frontier or threshold
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is determined by its individual PD via DFi = Φ−1(pi). In its discrete version on a fixed

horizon, the underlying asset return process and mutual covariances are defined as follows:

Xi =
K∑

k=1

βikZk +

√√√√1 −
K∑

k=1

β2
ik Z∗

i (1)

with Covar(Xi, Xj) =
K∑

k=1

βikβjk

and Zk, Z
∗

i ∼ N(0, 1) i.i.d., i = 1, . . . , N, k = 1, . . . , K

If we define the default variable Di = 1(Xi<DFi) as ’asset i defaults’, then we have the

following relations:

P (Di) = P (Xi < DFi) = pi (2)

Var(Di) = pi × (1 − pi) (3)

Covar(Di, Dj) = E(DiDj) − E(Di) × E(Dj)

= E
(
Xi < Φ−1(pi) ∩ Xj < Φ−1(pj)

)
− pipj

= Φ2

(
Φ−1(pi), Φ

−1(pj), ρij

)
− pipj (4)

For these formulas the asset correlation has to be specified. But as the asset value process’

variance at the fixed horizon is defined to be 1, the asset correlation equals the asset covari-

ance ρij =
∑K

k=1 βik × βjk. Aggregation over the portfolio via DPF =
∑N

i=1 Di yields

Var(DPF ) =
N∑

i=1

N∑

j=1

ViVj Covar(Di, Dj)

=
N∑

i=1

N∑

j=1

ViVj

(
Φ2(Φ

−1(pi), Φ
−1(pj), ρij) − pipj

)

and as risk contributions to the portfolio variance we have for asset i

∂Var(DPF )

∂Vi

= 2
N∑

j=1

Vj

(
Φ2(Φ

−1(pi), Φ
−1(pj), ρij) − pipj

)
(5)

However, at this point we want to introduce a new separate model with only a single core

factor βCF , with βCF
i , i = 1, . . . , N , the respective factor loadings for the individual assets.

For the new model, everything stays the same as for the old one except for the covariances,

i.e. the correlations:

Multi Factor Correlation for i 6= j: ρij =
K∑

k=1

βik × βjk (6)

Core Factor Correlation for i 6= j: ρCF
ij = βCF

i × βCF
j (7)

and in both cases for i = j: ρij = ρCF
ij = 1
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Therefore we would also only have to change the loss distribution’s variance

VarCF (PF ) =
N∑

i=1

N∑

j=1

ViVj

(
Φ2(Φ

−1(pi), Φ
−1(pj), ρ

CF
ij ) − pipj

)
(8)

and the portfolio risk contributions, which should be straightforward.

In a multi-factor normal copula world, the factor model defines the covariance/correlation

matrix, which in turn defines together with PDs, etc., the risk contributions. And these again

define the loss distribution’s variance and other statistics. However, this almost follows some

Markov-esque principle. If we know the correlation matrix, we no longer need the factor

model, and if we have, e.g., the risk contributions for the variance, we no longer need the

pairwise correlations to calculate the variance. This means on the other hand, that we

condense a sometimes over-specified factor model into pairwise correlations and further into

a set of just N risk contributions. Each set of parameters on its own is sufficient to calculate

the variance. Therefore, if we would have a new model where we have to calibrate a set

of N free parameters to approximate a loss distribution or its variance, we probably would

focus on the level with the fewest parameters to match, but which is still sufficient for our

purposes. The underlying idea of this core factor approach is to fit the new one-factor model

to replicate a set of given variance contributions. If we can replicate a given portfolio loss

variance, we would argue, the same model should also allow us to approximate the whole

loss distribution reasonably well. To put this in a more mathematical wording, let us define

a distance function for the calibration of the new model according to

DCF =
N∑

i=1

Vi

(
∂Var(PF )

∂Vi

− ∂VarCF (PF )

∂Vi

)2

(9)

DCF

2
=

N∑

i=1

Vi




N∑

j=1

Vj

(
Φ2(Φ

−1(pi), Φ
−1(pj), ρij) −

Φ2(Φ
−1(pi), Φ

−1(pj), ρ
CF
ij )

))2
, (10)

i.e. penalising differences in the variance risk contributions in the two models. The vector

β̂CF minimising the distance function

β̂CF = min
βCF

DCF (11)

is the vector of the core factor loadings for the new model.

So, what have we achieved by this. We fitted a new one-factor model to approximate

the variance contributions for the portfolio loss distribution as closely as possible, measured

by our distance function DCF . However, as mentioned earlier, we hope that in a normal
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copula world this should also allow us to approximate the whole loss distributions fairly well.

From this one-factor model it would easily be possible to very efficiently calculate the loss

distribution via numerical integration and all statistics of interest, e.g. expected shortfalls

or tranche risk contributions. This would be far more laborious in a multi-factor setting. It

might sound a bit preposterous, but there are a couple of points having to be borne in mind.

Surely enough we are no longer in a position to describe accurately pairwise correlations,

however, that’s also not been our main goal. We want to model the loss distribution and for

this the variance contributions should allow for a good approximation. And as we have to

approximate only N risk contributions with our N free parameters we would expect to get far

better results than if we would want to match all N×(N−1)/2 pairwise correlations. Further,

as the core factor’s calibration includes every variable affecting the loss distribution, we would

argue that most of the important information enters the calibration process. Unlike in the

standard PCA, big variance contributors will also have a heavy impact in the calibration,

which is a very desired property. The quality and degree of accuracy of this approach will

be demonstrated in the next section, where for some synthetic and realistic datasets the new

core factor will be calibrated.

In terms of implementation, it should be mentioned that the calibration could be per-

formed with a simple gradient or Gauß method. Because the underlying functions are smooth

and monotonous, convergence is rarely an issue. As we will demonstrate in the next section,

the calibration works very well for portfolios with up to 400-500 instruments. However, es-

pecially for optimisation algorithms some thought should be put into an efficient calibration

algorithm, as a number of costly bivariate normal distributions have to be evaluated repeat-

edly. It is also worth mentioning, as the asset exposures change during an optimisation,

the calibration to the (new) risk contributions would have to be performed anew in every

iteration. In any case, the most time consuming first calibration (in further optimisation

steps the old core factors can be used as starting point) takes in our C++ implementation

a couple of minutes for the above portfolios. Further, to avoid an early termination of the

algorithm, one also should ensure, that the approximation error in the core factor model

w.r.t. a desired statistic is smaller than the improvement steps of the optimisation.

3. Applications

To illustrate the performance of our approach, we apply it in several examples to two different

portfolios. One portfolio is synthetically generated and shall us allow to analyse some of the

properties and capabilities of the approach. The second portfolio shall allow us to examine

the core factor model under more realistic circumstances, and should represent a large well
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diversified portfolio, as can be found as underlying of, e.g., standard balance sheet SME

CLOs.

The Portfolios

The first portfolio consists of 100 assets, each with the same maturity, PD, coupon and

loss given default. The exposures are allocated equally to 10 buckets of 10 assets with 2mln

to 18mln volume. Further, we varied industry and country specifications according to the

scheme outlined in table 4. In the full factor model there are 1 global factor, 4 industry

factors and 4 country factors. A 5% global correlation has been assigned together with 20%

intra-industry correlation and another 5% intra-country correlation. Two assets from the

same country and industry would therefore have a 30% asset correlation, whereas assets

from different countries and industries would be correlated by 5%. In a variation of this

portfolio, for the analysis how concentrations are handled by the new model, we raised the

volume of one single assets to 110mln, representing 10% of the portfolio then. Further, we

erased industry and country factor loadings for one asset, thus reducing its R2 to 5%, and

increased factor loadings to
√

15%,
√

35%, and
√

20% for another asset to generate an R2

of 70% for it. The second portfolio shall represent a large well diversified standard balance

sheet SME CLO portfolio. It consists of 400 assets in more than 25 industries and countries,

with an average rating of BB-/Ba3. The total pool size is 2.000mln, the maximum single

obligor concentration is approx. 1%.

Risk Contributions and Loss Distributions

Firstly, for both portfolios we compare variance contributions and loss distributions calcu-

lated by the different approaches. As a gold standard, we calculate these quantities with the

full model. Additional to this, we use a model based on an approximation of the covariance

matrix by three principal components, and finally our core factor model. Though generally

for these applications a factor reduction is not necessary, it allows us to get an idea about

the quality of the approximations. For all models variance contributions can be calculated

analytically from their respective covariance matrices. This means the true covariance ma-

trix for the full model is used and its approximations for the two reduced factors solutions.

The loss distributions can be determined efficiently using Monte Carlo methods for the full

model and with Fourier transformations (see Merino and Nyfeler, 2002, for the general idea)

for the core factor and PCA approximations, using numerical integrations over the factors.

Figure 1 shows the results for the synthetic dataset. In Subfigure 1a a very good fit from

the core factor model for the variance contributions can be seen, simply superimposing the

true contributions. We plotted the results of the different approaches against the true vari-
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ance contributions, so the main diagonal represents a perfect fit. This can be seen in the

light grey points for the results of the full model results. The earlier mentioned systematic

bias in the PCA approximation is also quite apparent, where most of the contributions are

approximated very well. However, the results for a handful of assets to the left are relatively

poor. The approximations of the true loss distribution and its tail are displayed in Figures

1b and c, and are very good for both the core factor model as well as the PCA approach

(for reasons of clarity not displayed). Thereby, the calculation with the core factor is sub-

stantially faster than with the three PCAs, despite the time needed for the calibration. As

the calculation time increases exponentially with the factor dimension, the lower core factor

dimension more than makes up for the time spent on calibration. Even for very few nodes

in the numerical integration, e.g. 12, calculations were 10-15 times faster than with the

higher dimensional model. To present a more quantitative view on the approximation, we

further calculated the expected losses for a virtual tranching of this loss distribution, with

the results shown in Table 1d. For seven tranches the attachment and detachment points

are given, and we calculated the expected loss of these tranches with the full model and the

core factor approach. With a relative error in the 2%-3% range the core factor approach

matches the Monte Carlo results astonishingly well, bearing in mind that we use only one

factor instead of nine in the original model. For the most senior tranche we would argue,

that due to the finite number of Monte Carlo simulations on one side and the continuous

character of the Fourier transformations on the other, the bigger relative error in the results

should have more numerical than theoretical reasons.

Figure 2 shows the variance contributions for the synthetic data set with concentrations in

terms of volumes as well as correlations. Here the same degree of accuracy can be achieved,

even the 10% volume concentration in the upper right corner is captured very accurately.

For the realistic data set, we performed the same set of analyses as for the synthetic data and

the results are displayed in Figure 3. Again we can show a very good approximation with the

core factor approach to the true variance contributions. However, for few assets a suboptimal

fit can be observed. After a bit of fine tunig of the algorithm, these could be brought to

match the true values as well. But as we wanted to use the same standard algorithm for

all applications in this paper, we decided to display these slightly worse results, to properly

illustrate the capabilities of the approach in general realistic conditions. For this application

the results for the PCA build a noticeable ’cloud’ around the true contributions. This could

be a result of the dramatically increased number of factors which determine the covariance

matrix. Nevertheless, the resulting loss distributions are again for both approximations very

accurate. The PCA approach has again been omitted from Figures 3b and c for reasons of

clarity. For another virtual tranching for this data set, the relative errors also show a great

degree of accuracy, when using the core factor approach.
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In conclusion, we can state that where we have a gold standard, the core factor allows to

approximate the true variance contributions and the whole loss distributions to a remarkable

degree of accuracy, even though it is using only one factor in the copula approach.

In a next step, we also want to calculate the expected shortfall contributions to the 99%

quantile. These statistics are displayed in Figure 4, calculated for the core factor and the

PCA approach. Such figures can be of great importance when, e.g., calculcating hedge ra-

tios for CDO tranches, and are easily accessible numerically for the Fourier transfomation

approaches. With the Monte Carlo algorithm in the full model a calculation is in general

too time consuming in order to get stable results. It should be mentioned that in this case,

as we do not have the results for the full model, the results are plotted against the core

factor results. Therefore, the latter naturally appear on the diagonal. The results in Figure

4 show a bit more variation for the synthetic dataset compared to the variance contributions,

whereas the results for the realistic data appear very similar. The increased variation for the

synthetic data show a similar systematic pattern as earlier. This could be explained once

by the different references in the plots, but also by the slightly worse fit in the quantiles by

the PCA approach. For example for the latter, the relative error in the virtual tranching

for tranches B, C, and D, would be -5.12%, -4.84%, and -4.20%, respectively, instead of the

results shown in Table 1d. However, as we can not provide a gold standard in this case, we

leave the final judgement to the interested reader.

Optimisation

In a next step we illustrate the performance of the core factor model when using it in

optimisation routines. As a target we use once an unexpected loss minimisation and later an

expected shortfall minimisation. To correct slightly for the strong effects the ratings have in

the realistic data, we decided to keep constant not only the overall volume, but also the pool

income. As lower rated assets in general are higher yielding, this has the effect that in the

above optimisations all volume is not simply put into the highest rated assets. Individual

allocations are also deterministically limited to a maximum of 5% of the pool volume. The

results for the unexpected loss minimisation are for both data sets displayed in Figures 5a and

b. As for the risk contributions, in the unexpected loss optimisation we are able to provide a

gold standard, calculated with the full model. It is again depicted by the light grey line, and

is superimposed with a very accurate match from the core factor results. The PCA approach

shows not too bad results for most of the assets, however has quite an error margin in some

allocations. It appears that the repeated redistribution of volumes according to variance

contributions emphasised even more the small systematic differences as depicted in Figure

1a. For the realistic data set the differences in the results are less systematic, however, also
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here we can see variations around the true results in a comparable magnitude. Similar results

are displayed for the expected shortfall optimisation in Figures 5c and d. When looking at

the expected shortfall results for the synthetic data, one difference to the unexpected loss

results is a slightly more accentuated separation between higher and lower risk contributors.

To minimise an expected shortfall in the tail, it is apparently advisable to shift more volume

in less correlated assets and by this to reduce the joint default probability for larger parts

of the portfolio. In contrast to this, the unexpected loss minimisation appears to penalise

concentrations in general a bit more. The results also demonstrate what substantial effect

the systematic bias in the PCA approach can have. For example for the synthetic data set, as

we have differences in the expected shortfall contributions for a handfull of assets (see Figure

4a), in an expected shortfall minimisation these assets get in the PCA approach allocations

which are upto 20% higher than with the core factor. For illustration, we calculated the

expected shortfall for both ’optimal’ portfolios using the full model and the Monte Carlo

approach. Starting at an expected shortfall of 9.14% for the original dataset, it showed an

expected shortfall of 8.61% for the optimal portfolio from the core factor approach, and

8.90% for the PCA result, proving that the PCA result is indeed sub-optimal compared to

the core factor results.

4. Discussion

In summary, in this paper we introduced a new factor reduction approach, allowing us to

approximate the portfolio loss distribution to an astonishing degree of accuracy with just

one core factor. A new one-factor model was calibrated to replicate a given set of portfolio

loss variance contributions and could then be used to calculate the whole loss distribution.

We could show, that besides the loss distribution, we can achieve good results using the core

factor approach when determining other risk contributions, or when using it in optimisation

algorithms. Thereby, the applications comprised synthetic as well as realistic data, as found

in structured finance transactions. In addition, by cutting the number of dimensions in the

numerical integration to just one, we simultaneously could reduce the computational burden

dramatically.

Despite the above results, a number of questions still remained unanswered and are in

need to be addressed. As we discard in the core factor approach a substantial amount of

pairwise correlation information, the first question would be, what kind of information is

needed to characterise a loss distribution uniquely. Usually we are given the asset volumes,

the PDs, the LGDs, and the covariance matrix (e.g. in form of a factor model), which define

the loss distribution. The above analyses suggest that instead of the covariance matrix also
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the assets’ variance contributions might be sufficient to do this. This would mean that the

very good fit we saw has not been just coincidence. It would justify to use a method, which

was calibrated to variance contributions, to calculate quantiles and other loss distribution

statistics. However, we can neither provide any mathematical proof for this assumption,

nor are we able to quantify the amount of information we loose in case we do. It would be

interesting to know, whether or to which extent variance contributions really are sufficient

in a mathematical sense. Further, one observation we made was that the covariance matrix

resulting from the single core factor is fairly different to the original one, yet both yield

very similar loss distributions. This is also in line with observations form the structured

finance market, where a plethora of public and proprietorial factor models are in use, which

have very different factorisations, but nevertheless yield very similar loss distributions, i.e.

tranchings. It would mean that as long as the variance contributions are the same, we would

have a very subjective choice on how to populate the covariance matrix. However, it has to

be stated unambiguously that this approach is by no means a supplement for a thorough

calibrated factor model and should not be seen as such. It is calibrated to an ’existing’

covariance matrix, and should be regarded as an information extract to facilitate the loss

distribution calculation.

The second open question is a direct consequence of the first. If variance contributions

are sufficient, or at least define the characteristics of interest for us, how good a fit can

we achieve with just one factor. And, is there a direct analytical solution to calculate the

core factors. Because of the two-dimensional normal distributions within the algorithm, we

tend to answer the second part with ’no’. For the first part, in our research we experienced

that the calibration of the core factor yield without exception an astonishingly accurate

fit for all data sets used. As stated, the differences for the realistic data could have been

avoided by a more finely tuned version of our general algorithm. Together with the fact that

we have N free parameter to calibrate to N contributions, and that the partial derivatives

of the normal distributions are smooth and monotonous functions in our parameters, we

therefore are inclined to answer the first question with a not overly confident ’a perfect fit’.

Nevertheless, if we are proven wrong, how many factors would we need to achieve the perfect

fit? Due to the reduced number of parameters, in any case it should be a number far lower

than N .

All above questions become even more difficult to answer, when we would want to leave

the Gaussian copula world. If heavier tailed t-distributions or others are to be applied,

the defined target function is probably no longer suited to yield accurate approximation

results. Perhaps higher order moments would have to be integrated. Nevertheless, the

central question remains the same: ’How many parameters do I really need to define the loss
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distribution uniquely?’

Apart from the open theoretical questions, there are also some practical problems in need

to be addressed. So far we calculated the core factor for a static portfolio of bullet assets with

fixed maturity, PD, and LGD. Naturally, the target function (9) would have to be adjusted

if we were to allow for some more flexibility. The first that comes to mind would be a term

structure for the PDs, potentially together with amortising assets. Time varying PDs or

amortising assets would mean the variance contribution of an asset might change over time.

Currently the core factor would have to be calibrated for every time point anew. A more

integrated approach would be desirable. Another line of development would concern the

calibration for larger data sets, i.e. more than 1000 assets. We hadn’t convergence problems

for the examples we showed so far, however, by the definition of the calibration, there is no

doubt that at some point they will arise. Again, a direct approach should be far more robust

and time efficient.

References

Andersen, L., Sidenius, J. and Basu, S. (2003). All your hedges in one basket. Risk, No-

vember 2003, 67–72.

Merino, S. and Nyfeler, M. (2002). Calculating portfolio loss. Risk, August 2002, 82–86.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates.

Journal of Finance 29, 449–470.

Vasicek, O. A. (1991). The loan loss distribution. Technical report, KMV Corporation.

12



Country 1 Country 2 Country 3 Country 4 Total

Industry 1 13 11 8 5 37

Industry 2 11 9 7 3 30

Industry 3 8 7 5 2 22

Industry 4 5 3 2 1 11

Total 37 30 22 11 100

Table 1: Synthetic test portfolio.

a)

b) c)

Tranche A B C D E F G

Detachm. Point 100.00% 8.50% 7.50% 6.50% 5.50% 4.50% 3.50%

Attachm. Point 8.50% 7.50% 6.50% 5.50% 4.50% 3.50% 0.00%

EL Multi Factor 0.011% 0.690% 1.196% 2.086% 3.645% 6.494% 31.136%

EL Core Factor 0.011% 0.689% 1.169% 2.018% 3.542% 6.351% 31.131%

Rel. Error 9.09% -0.12% -2.30% -3.28% -2.83% -2.20% -0.01%

d)

Figure 1. Variance contributions and loss distributions for the synthetic dataset.
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Figure 2. Variance contributions for the synthetic dataset with concentrations.

a)

b) c)

Tranche A B C D E F G

Detachm. Point 100.00% 18.50% 16.50% 14.50% 12.50% 10.50% 8.50%

Attachm. Point 18.50% 16.50% 14.50% 12.50% 10.50% 8.50% 0.00%

EL Multi Factor 0.004% 0.389% 1.116% 2.918% 7.005% 15.601% 68.253%

EL Core Factor 0.004% 0.395% 1.117% 2.910% 6.988% 15.415% 68.168%

Rel. Error 3.21% 1.62% 0.14% -0.29% -0.24% -1.20% -0.12%

d)

Figure 3. Variance contributions and loss distributions for the realistic CLO dataset.
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a) b)

Figure 4. Expected Shortfall 99% Contributions for the synthetic (a) and realistic CLO (b)

dataset.

a) b)

c) d)

Figure 5. Optimisation results for the synthetic (a,c) and realistic CLO (b,d) dataset.
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