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Summary

The analysis of default probabilities and correlations within credit risky portfolios is

usually strongly affected by the scarce availability of data. High standard deviations

and a fair amount of uncertainty in the derived estimates are well known consequences

of this. However, when deriving predictions in a second stage these volatilities are usu-

ally ignored and only point estimators are used, giving a false appearance of accuracy.

The aim of this paper is to show how a consideration of these uncertainties will affect

this second stage analysis. Besides the introduction of a new Bayesian credit portfolio

approach, for this purpose in a Bayesian framework the joint posterior distribution of

default probabilities and correlation parameters will be derived. Further, the effects are

quantified a consideration of this distribution would have, with respect to the prediction

of portfolio risk figures and also for pricing of structured derivatives.
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1. Introduction

Historic default time series are a natural data source for predicting the future evolution

of credit risky instruments. Besides the estimation of individual default rates, thereby

especially for the assessment of portfolio risk, the estimation of potential dependencies

between elements of the portfolio plays an important role. In recent publications sev-

eral approaches have been presented to quantify default probabilities of different rating

classes and correlations within and between industries (see e.g., Demey et al. 2004, De

Servigny and Renault 2003, and Gordy and Heitfield 2003).

Two, amongst other areas in which the findings of the above approaches are utilised, are

credit portfolio management and the structured finance sector. In both areas an accurate

description of the risks inherent to credit portfolios is essential. There, the calculated

maximum likelihood estimators for default probabilities and correlations are used to as-

sess the future risk of a portfolio of interest, where risk is in many cases defined as a

certain quantile of the portfolio loss distribution. In the latter applications, even though

in most publications standard deviations or errors of estimators due to the limited sam-

ple size and data quality are well recognisably displayed, these uncertainties about the

accuracy of the used parameters are usually ignored. Because of the supposedly complex

distributions of and dependency structures between the parameters, in classic statistics a

consideration of these relationships is also a far from straightforward task. Furthermore,

this measurement error problem is the subject of a complete research area.

Bayesian models in general have already been introduced to a wide range of applications.

Due to its underlying idea and theoretical simplicity, hierarchical Bayesian modelling al-

lows for the formulation and solution of a wide range of complex questions and problems.

The quantification of highly multi-dimensional distributions, stochastic restrictions, as

well as the incorporation of temporal and spatial dependency structures build the foun-

dation of the recent success story of the Bayesian paradigm. Moreover, the benefits of

the incorporation of prior information to mitigate the consequences of sparse data bases

and measurement error environments are a well known fact. In this paper the main

focus lies on the development of a credit portfolio model within a Bayesian framework.

One advantage of such a Bayesian approach would be, that one would easily be capable

of overcoming the above mentioned problems. Using adequate estimation techniques,

within a Bayesian framework it is possible to derive and make available the joint distri-

bution of a set of parameters, conditional on a given set of observations, and not only

a few descriptive statistics. This distribution could then be used in a second inferential
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stage to consider the randomness of derived default probability and correlation estimates

and to assess what the effects are with respect to risk figures and pricing.

The aim and the structure of this paper is twofold. The first part briefly recapitulates

the basic principles of the Bayesian approach, with emphasis on the fundamental switch

of paradigm inherent in it. Here a short overview of the standard estimation approach

for Bayesian models, the Markov Chain Monte Carlo (MCMC) methods, will also be

given. In the second and main part a first simple application of the Bayesian paradigm

to the credit risk sector will be proposed to show its potential. After the formulation

of a Bayesian standard one factor credit portfolio model, estimates for individual rating

dependent probabilities of default (PDs) and the portfolio correlation are derived from

rating agency data. As this could also easily be done within the classical framework,

additionally the joint dependency structures between these parameters are quantified

and the benefits and implications are shown these results will have when applied to the

calculation and prediction of risk figures for particular portfolios.

As a last remark, throughout the paper, all densities will be denoted by p(.) and all

distribution functions will be denoted by P (.). The particular contexts should reduce

potential confusions regarding the corresponding probability spaces to a minimum.

2. The Bayesian Approach

The fundamental idea of Bayesian statistics builds on the Bayesian theorem

p(β|data) =
p(data, β)

p(data)
(1)

=
p(data|β) p(β)∫

p(data|β) dβ
,

describing the relation between a set of observed data and some unknown parameters

β. Inherent to the theorem is the basic difference between Bayesian and classical ap-

proaches in statistics, the assumption that the model parameters though unknown are

nevertheless no longer fixed. It is supposed that these parameters have a distribution,

too, comparable to the observed data sample. And this distribution can and has also

to be specified. We will come back to the problems and opportunities this requirement

imposes in a moment. This so called prior distribution or information is now combined

with the information about the parameters contained in the data sample to form a so

called posterior distribution of parameters conditional on the observed data. This is

3



sometimes also called a learning process or an update of the prior information with the

data sample. The resulting posterior distribution finally holds all information regarding

the parameters, contributed once by the priors and once by the observed data. To calcu-

late the posterior, one part is built by the standard likelihood function of the observed

data conditional on the unknown parameters, the other part is covered by the prior of

the parameters.

For the formulation of these priors two general cases can be distinguished. The first is

where substantial prior information is available, i.e. specific distributions or samples of

previous analyses, and can be expressed as a distributional assumption, not necessarily

in an analytical or parametrical fashion. These are evidently a natural choice for prior

distributions. However, the second and more common setting is where there is only

very little or no prior information available. In this case this non-existent information

has also to be translated into a distributional assumption. For this purpose usually

overdispersed or flat priors are applied, e.g., uniform distributions on the unit interval

for probabilities p ∼ U(0, 1), or flat normal distributions for metric unrestricted parame-

ters a ∼ N(0, s2) with a sufficiently large variance s2 (À1000) to allow for a practically

overdispersed distribution on a reasonable interval for a. To allow in not too complex

settings for an analytic solution for the posterior, also so called conjugate priors can be

used. For normally distributed observations, for example, normal and inverse gamma

prior distributions for the unknown mean and variance result in the same posteriors for

the respective parameters. But this should be mentioned for completeness only, due to

the introduction of computerintensive numerical estimation techniques one is more or

less free in the choice of the priors to apply.

As a general remark, it is also the formulation of the prior distributions that accounts

most towards the flexibility of the Bayesian approach. Smoothly over time changing para-

meters can be described by autoregressive random walk priors. Two dimensional versions

of these can also be used to introduce spatial dependencies into the estimation, where

differences in the parameter values of neighboring observations are penalised, yielding a

smooth parameter surface. Robust spatial priors, using Cauchy or Student distributions,

can even be used to describe edges within the surface. And as a matter of fact, the use of

latent variables with adequate prior distributions to achieve conditional independence,

as also applied in the factor models for credit portfolios, is one of the most frequently

used ideas in Bayesian statistics.
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3. Estimation – MCMC methods

Even though the Bayesian theorem has been known for over 200 years and also the

Bayesian paradigm of a learning process and its advantages have been lively discussed

in statistics, a major drawback until the 1980s–1990s was the fact that apart from some

simple and analytically tractable settings, the denominator of theorem (1) can not be

determined. The posterior can be quantified only up to a normalising constant, making

it almost impossible to analyse its characteristics because standard direct Monte Carlo

methods like rejection or importance sampling can not be applied. Even though the

principles of algorithms which were able to overcome this limitation were already pre-

sented by Metropolis et al. (1953) and Hastings (1970), only the dramatic increase in

computational power finally allowed the application in statistics. Once started by pub-

lications of e.g. Besag et al. (1991), Smith and Roberts (1993), or Gilks et al. (1996),

the MCMC techniques soon became the method of choice in Bayesian statistics because

of their flexibility, robustness, and almost unlimited applicability.

In contrast to direct Monte Carlo methods, MCMC techniques do not sample from a dis-

tribution or density of interest directly but construct a stationary Markov Chain whose

transition kernel converges against this distribution. Once convergence has been reached,

realisations of the chain are at the same time realisations of this (posterior) distribution.

Thereby, it is fully sufficient if the distribution in question can only be specified up to

a normalising constant. From this sample all characteristics of interest with respect to

the posterior can be derived. A theoretically more profound introduction and practical

applications can be found in Casella and George (1992), Tierney (1994), and Chib and

Greenberg (1995). Further, an important aspect worth mentioning is that the realisa-

tions represent a sample from the joint posterior distribution of the parameters, allowing

also for conclusions regarding higher order dependencies between parameters.

Many Bayesian models can usually be implemented and estimated using freely available

software packages, as e.g. WinBUGS (Spiegelhalter et al., 2003) or BayesX (Lang et

al., 2004). Within these packages samples from the posterior distributions are generated

using Gibbs or Metropolis Hastings algorithms. Further, advanced monitoring tools are

supplied to ensure mixing properties and convergence of the used Markov chains. Sam-

ple means or medians are well established point estimators for the unknown parameters.

If overdispersed priors are applied, taking the posterior mode as estimator would yield

comparable results as in the maximum likelihood framework. However, because in prac-

tice even for massive samples in high dimensional settings the mode is empirically quite
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difficult to determine exactly, usually the above statistics are used. Highest posterior

density regions can be used as the Bayesian analogue to classical confidence intervals.

4. A simple Bayesian credit portfolio model

In the second part of this paper the Bayesian idea will be applied to the credit risk

sector. In the following let us consider a portfolio of N credit risky instruments or

assets ai, i = 1, . . . , N , each comprising one unit. Each of these assets can be classified

into one of a finite number of risk classes ri ∈ {R1, . . . , RK}, defining its risk profile

completely. The risk or rating classes have individual one year probabilities of default

pRj
, j = 1, . . . , K, with the asset PDs pi = pRj

for ri = Rj . Further, let us suppose the

respective instruments follow a one factor asset value model, as introduced by Merton

(1974) or Vasicek (1991). In this framework it is assumed that an instrument or firm

defaults when its asset value process Xi falls below the firm’s liabilities or a certain

default frontier. The corresponding default frontier or threshold is determined by its

individual risk profile or risk class ri. In its discrete version on a one year horizon, the

underlying asset return process is defined as follows:

Xi =
√

1ρ Y +
√

1− ρ Zi , i = 1, . . . , N , (2)

ρ ∈ [0, 1], Y ∼ N(0, 1), Zi ∼ N(0, 1) i.i.d. .

The process is the sum of a common factor Y invariant throughout the portfolio and an

idiosyncratic component Zi resembling an independent individual contribution of asset i

to its evolution over time. These two components are weighted by a correlation parameter

ρ determining the intra-portfolio dependencies within the whole portfolio. This model

also corresponds to Gordy and Heitfield’s restrictions R1 and R3. Even though there

might be criticisms about the adequacy of this simplifying approach, however, for the

ideas to be shown in this article it is perfectly well suited. Potential generalisations

to more flexible multi factor approaches should be obvious. With the above default

probabilities the following relation can be written down,

P ( asset i defaults ) = P (Xi < ki) = pi

=⇒ ki = Φ−1(pi) . (3)

Further, conditional on the portfolio factor Y this equation becomes

P ( asset i defaults | Y = y ) = P (Xi < ki | Y = y) = pi|y

=⇒ pi|y = Φ

(
Φ−1(pi)−√ρ× y√

1− ρ

)
, (4)
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completing a generalised linear model for Bernoulli data with a probit link function.

Utilising the conditional independence of the elements on the factor Y and the grouping

into homogeneous risk classes allows further to specify the joint probability distribution

of observing a certain number lRj
of defaults in the respective risk classes of the portfolio

comprising nRj
assets,

Lj|Y =y =
∑

ri=Rj

1Di|Y=y, j = 1, . . . , K,

P (L1 = l1, . . . , LK = lK | Y = y ) =
K∏

j=1

B(nRj
, pj|y, lRj

) ,

with B(n, p, k) the standard Binomial distribution. Without loss of generality and for

simplicity at this point it is supposed that in case of default every obligor suffers the

same loss of one unit, i.e. their loss given default is 100%. General concepts of loss

severity or loss given defaults should not be too difficult to incorporate. Defining Lt =

(Lt,1, . . . , Lt,K), nt = (nt,1, . . . , nt,K), p = (pR1 , . . . , pRK
)′, and also considering the other

unknown parameters the complete conditional likelihood function for period t and a one

year horizon can be rewritten in a concise form

P (Lt = lt | nt,p, ρ, yt ) =
K∏

j=1

B(nt,Rj
, pj|yt , lt,Rj

). (5)

As pointed out in section 2, in addition to the likelihood function, to complete the

Bayesian portfolio model it is left only to specify the prior distributions. Assuming the

case of no substantial prior information and therefore flat priors for the parameters, and

exploiting the serial independence of observations, this yields the complete hierarchical

Bayesian credit portfolio approach and the corresponding posterior distribution of the

unknown parameters conditional on the observations (n, l)

P (p, ρ,y | n, l) =

∏T
t=1 P (Lt = lt | nt,pyt , ρ, yt ) p(p)p(ρ)p(y)

P (L = l | n)
, (6)

pyt = (p1|yt , . . . , pK|yt)
′ ,

pj|y = Φ

(
Φ−1(pRj

)−√ρ× y√
1− ρ

)
,

pRj
∼ U(0, 1), i.i.d., j = 1, . . . , K ,

ρ ∼ U(0, 1) ,

yt ∼ N(0, 1), i.i.d., t = 1, . . . , T ,

thereby defining U(0, 1) as the uniform distribution in the unit interval and y = (y1, . . . , yT )′,

and P (L = l | n) can be calculated by integrating the numerator of equation (6) with
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respect to p, ρ, and y. Indicated by the priors above, in this paper the correlation be-

tween instruments is assumed to be positive, even though this is known to be the subject

of a lively discussion. The above model is easily estimated using the WinBUGS package

and in the remainder of the paper its application to historic Standard & Poors rating

agency default data will be discussed in detail.

5. Application – Analysis of historic data

The data which will be used to illustrate the Bayesian approach were published in Stan-

dard & Poors’ default report (Standard & Poors, 2005). In this report for the last 24

years, beginning in 1981, the numbers of rated companies are listed and also the fraction

thereof defaulting, split up by their respective rating categories. Even though agency

data are also available for AAA and AA rating classes, the analysis is restricted to the

lower rating grades beginning with the A class. By doing so the difficult question can be

avoided, whether the lack of observing a significant number of defaults in these higher

classes is the result of a very conservative classification, or whether it is the actual con-

sequence or manifestation of correlation. It should also be pointed out that the real data

examples in this article are used for illustrative purposes only and should be understood

as such. No efforts were undertaken in validating the data beforehand, but the published

default data were assumed to be suitable for the presented model, i.e. fulfill the assump-

tions made in the previous section. With these data, the initial aim is to derive the

joint posterior distribution of historic average default frequencies of the rating classes,

the portfolio correlation, as well as the portfolio factor time series.

We generated joint posterior distribution samples of 25,000 observations, using Markov

chains of a length of 2,200,000, and taking every 80th state of the chains, with a burn

in phase of 200,000 iterations. By this strategy autocorrelations and convergence di-

agnostics of the algorithm reached sufficiently low levels. Table 1 shows a number of

descriptive statistics of the posterior distributions. Figure 2 displays two-dimensional

contour plots, as well as kernel density estimates for selected two-dimensional marginal

distributions. Further, in Figure 1 the posterior mean of the portfolio factor time series

is shown together with its 97.5% and 2.5% quantiles.

It can easily be verified that for rating classes A to B the results for the average PDs

are slightly higher than the average number of defaults over time. Correlation effects

and the use of the arithmetic mean as a Bayesian point estimator should be the most

likely reasons for these differences. Especially for skewed distributions such as the ob-
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served (see e.g. Figure 2c,d), shifts of the arithmetic mean towards the heavier tails are

to be expected. Further, the estimate for the correlation factor is roughly at the same

level compared to the results of Gordy and Heitfield for restrictions R1 and R3, and

the results of De Servigny and Renault. Besides the already mentioned explanations,

changes in the underlying data and the sensitivity of this parameter even to slight data

changes should contribute most to the differences. As a backtest, also the approximate

Bayesian posterior mode has been derived for the data used by De Servigny and Renault,

with similar results compared to their estimated portfolio correlation of 6.3%. For these

numbers, due to the highly skewed correlation distribution the posterior mean was at

7.9%. However, particularly noteable are the high standard deviations especially for the

higher rating classes and also for the correlation parameter, indicating a fair amount of

uncetrtainty in these estimates. The time series of portfolio factors themselves are not

remarkably different to the results when solving equation (4) for the variable Y , using fre-

quentistic estimates for the correlation and for example the PD estimate for class CCC.

Nevertheless, at least one important difference exists between classical solutions for this

problem and the Bayesian results. For all mentioned parameters a sample of their joint

posterior distribution exists. Especially with respect to the portoflio factors, parameters

do not have to be estimated using a back-fitting algorithm or a two step approach, they

can be derived simultaneously. Instead of being confined to the Hessian or information

matrix, the above sample allows further to derive a whole variety of characteristics of

their joint dependence structure, such as joint excedence probabilities etc., or simply to

resample from it. For the remainder or this paper, the latter aspect is of special interest.

The problem of how to account for the estimators’ volatilities in the prediction simplifies

dramatically with their joint distribution available. It reduces to a simple resampling

problem.

6. Application – Predictions

One of the most important applications of the above results is the prediction of risk

levels for particular portfolios. When defining risk as deviations from or uncertainties

about expectations, in addition to variations in external regressors, one should also

consider the uncertainties built into the parameters these expectations are based on.

In classical approaches, however, in this second stage usually point estimators derived

from the above historical data are used to assess this risk, in general not accounting

for any measurement problem. As pointed out, in the Bayesian framework this could
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be easily overcome because of the direct availability of a posterior distribution sample

for the parameters. To show the remarkable effects an incorporation of the mentioned

uncertainties can have, the default/loss distribution will be derived for homogeneous

portfolios for all rating classes ri ∈ {R1, . . . , RK}, consisting of an infinite number of

identical assets. To calculate the fraction of defaulting assets, in one case the historical

point estimators are used and in the other case random samples from the joint posterior

distribution are drawn. Thus, for the fraction lRk
of defaulting assets in a portfolio of

assets from risk class Rk equation 4 can be applied in the following contexts:

lRk
(p∗, ρ∗, y) = Φ

(
Φ−1(p∗)−√ρ∗ × y√

1− ρ∗

)
,

y ∼ N(0, 1)

I classical approach : p∗ = p̂, ρ∗ = ρ̂ (7)

II Bayesian approach : (p∗, ρ∗) ∼ P (pRk
, ρ | n, l,y) (8)

Thereby, to result in identical expected losses for the portfolios as point estimators p̂ and

ρ̂, the arithmetic means are calculated from the posterior distributions, from which also

the samples are drawn. Samples of 100,000 realisations have been generated. Tables 2

and 3 show some descriptive statistics of the default distributions, Figure 3 displays the

corresponding kernel density estimates. In Figure 4 the differences in the quantiles, also

observable in the above tables, are illustrated by normalizing them to the quantiles for

approach I. In the tables and in the quantile plot considerable increases of up to 20%

in the 95% and 99% quantile values can be observed, moving from the classical to the

Bayesian approach. This observation should be a direct consequence of the variation

of the underlying parameters in the Bayesian approach and of the dependence between

PDs and correlation parameter ρ as it can also be seen in Figure 2.

From the above results for the credit portfolio modelling two conclusions can be drawn.

The first is, incorporating the uncertainties generally inherent to point estimators into

a portfolio model in a second stage yields significantly increased quantiles and thus risk

figures in the predictions. And as a second result, this effect varies with the amount or

lack of information available. In other words, the more reliable the point estimators are

the less additional risk is introduced in the predictions when accounting for their ran-

domness. The effect is largest for the A rating class and decreases when going down the

rating scale. Where there are only few defaults observable for a rating class the estimated

PDs standard deviation or uncertainty is quite a bit higher than for rating classes with

very frequent defaults like the CCCs. Accordingly, the risk or unexpected number of

defaults increases, too. It should further be mentioned that we used the posterior mode
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as a point estimate in the classical approach to derive the above numbers. Due to the

skewed posterior distributions, with the application of the posterior mode the increases

in the quantiles should be even more prominent.

Are the above results interesting from a portfolio manager perspective, what are the

effects with respect to structured products, which also heavily depend on accurate port-

folio modelling? Let us consider an arguably hypothetical transaction based on one of

the above infinitely granular portfolios, e.g. comprising BB assets. For simplicity and to

avoid any complexities regarding multi-year PDs, we want to sell protection for one year

on a tranche with an attachment point of 1.90% (i.e. the 50bps quantile of the classic

prediction!) and a 1% thickness. Further, we are only concerned about the credit risk

in this transaction. What would be the adequate price, i.e. the expected loss of this

transaction. Per definition in the standard setting we have a hitting probability of 50bps

and the expected loss can be quantified with 23bps, resulting in a loss given default of

46%. Deriving these quantities for the Bayesian approach, the PD of this tranche turns

out to be at 88bps, the expected loss increases to 50bps, thus yielding a loss given default

of 57%. In other words, the incorporation of some ’doubts’ about the accuracy of the

underlying parameters more than doubles the adequate price at which this protection

should be sold. The effects on the rating of this tranche do not have to be mentioned.

7. Discussion

The aim of this article was to introduce a Bayesian approach to the modelling of credit

risky portfolios. A Bayesian portfolio model was formulated, which allows to describe

default frequencies and intra-portfolio correlations. Further the implications could be

shown of considering the randomness of derived parameter estimates in a second stage

when assessing portfolio risk, from a portfolio management point of view as well as for

the purpose of pricing and rating credit portfolio derivatives.

Especially in the area of pricing and rating credit derivatives in recent years publicly

available models like the S&P CDO Evaluator or Fitch’s VECTOR model became more

and more popular, and can without any question be regarded as an industry standard

commonly accepted. However, they exactly stand for the classic approach discussed in

the previous section 6. As well as for ratings as for correlations, undoubtedly with more

sophisticated underlying factor models, fixed estimates or parameters are used without

any consideration of their randomness, not to mention their dependence structure be-
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tween each other. Additionally, the fact that many predictions are not only made for

the next year, as in the above example, but usually for time periods of 5 to 7 years

makes the situation even more precarious. With an increasing number of parameters to

estimate or calibrate, the effects of small sample sizes usually present in this area should

become increasingly important. This holds for multi-year PDs as well as for say industry

specific correlation levels. The latter might possibly be derived from the broader data

basis of equity data, nevertheless also due to the transfer from equity to asset or default

correlations, this should not solve the problem completely.

When looking at the results of the portfolio model in table 1, as pointed out an inter-

esting detail is the relation between the sample means and the corresponding standard

deviations. For the higher rating classes and the correlation parameter the standard

error amounts of 30% to 50% of the mean. Comparable results can also be seen in De

Servigny and Renault (2003). The results are also in agreement with a general study on

confidence intervals for default probabilities of Hanson and Schuermann (2005). An effect

of this relation surfaces when omitting one or two years in the analysis. In general it is

assumed that the default data are serielly independent, so this should pose no problem.

However, changes of 5% to 10% especially in the correlation parameter are not unusual.

This raises again the question whether the use of relatively volatile point estimators are a

sensible choice to derive quantities down to precisions in the basispoint area. In Bayesian

approaches as well as classical measurement error models these problems surely do not

vanish, but at least it is accounted for.

Models with latent variables are one of a variety of Bayesian applications in statistics.

In econometrics autoregressive hierarchical Bayesian models have already been applied to

macroeconomic problems such as unemployment durations or flat rent data. Further, the

use of substantial prior informations for credit scoring has been analysed. As presented

in the previous sections, also in the credit risk sector Bayesian techniques proved to

be useful. Perspectives for the future may therefore be a more thorough investigation,

how more of their advantages can be exploited in particular for the credit risk area. For

example the extension towards a multi factor approach is obviously at hand. Further, the

use of time series techniques to describe the temporal evolution of underlying portfolio

factors are conceivable. Moving from a copula induced single period factor model to

temporal dependencies seems to be a reasonable idea. And also the incorporation of a

time-varying seasonal component into the probabilities of default to put more emphasis

on their point in time component could be a project for the near future.
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A BBB BB B CCC rho

Hist. Mean 0,0004 0,0023 0,0107 0,0561 0,2813

Mean 0.0006 0.0029 0.0123 0.0591 0.2789 0.0941

Std. Dev. 0.0003 0.0010 0.0031 0.0095 0.0257 0.0357

2.5% 0.0002 0.0016 0.0079 0.0445 0.2328 0.0449

25% 0.0004 0.0022 0.0102 0.0526 0.2613 0.0690

Median 0.0005 0.0027 0.0118 0.0578 0.2772 0.0873

75% 0.0007 0.0034 0.0137 0.0642 0.2949 0.1115

97.5% 0.0014 0.0055 0.0198 0.0817 0.3341 0.1826

Table 1: Descriptive statistics for the parameter posterior distributions of the Bayesian

Credit Portfolio Model (6).
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Figure 1. Posterior mean and quantiles for the portfolio Factor Y.
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Figure 2. Joint posterior distribution for selected parameters of the Bayesian credit

portfolio model (6).
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A BBB BB B CCC

Mean 0.0007 0.0041 0.0143 0.0613 0.2929

Std. Dev. 0.0008 0.0039 0.0112 0.0354 0.0969

1% 0.0000 0.0003 0.0016 0.0115 0.1067

5% 0.0001 0.0006 0.0029 0.0187 0.1481

10% 0.0001 0.0009 0.0040 0.0237 0.1735

25% 0.0002 0.0016 0.0066 0.0355 0.2223

Median 0.0004 0.0029 0.0113 0.0536 0.2851

75% 0.0009 0.0052 0.0187 0.0791 0.3556

90% 0.0015 0.0086 0.0284 0.1086 0.4238

95% 0.0021 0.0114 0.0363 0.1291 0.4643

99% 0.0039 0.0184 0.0547 0.1749 0.5408

Table 2: Predictions of risk class dependent loss distributions for infinitely granular

homogenous portfolios using the classical approach (7).

A BBB BB B CCC

Mean 0.0007 0.0041 0.0143 0.0613 0.2929

Std. Dev. 0.0010 0.0045 0.0123 0.0377 0.0998

1% 0.0000 0.0002 0.0013 0.0100 0.0958

5% 0.0001 0.0006 0.0028 0.0180 0.1445

10% 0.0001 0.0008 0.0039 0.0236 0.1728

25% 0.0002 0.0015 0.0065 0.0354 0.2229

Median 0.0004 0.0028 0.0110 0.0531 0.2844

75% 0.0008 0.0051 0.0182 0.0778 0.3533

90% 0.0015 0.0083 0.0281 0.1079 0.4239

95% 0.0022 0.0116 0.0365 0.1320 0.4719

99% 0.0046 0.0213 0.0609 0.1907 0.5682

Table 3: Predictions of risk class dependent loss distributions for infinitely granular

homogenous portfolios using the Bayesian approach (8).
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Figure 3. Density estimates for risk class dependent portfolio loss predictions. Left:

full distributions. Right: zoomed tail section.
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Figure 4. Comparison of quantiles for risk class dependent portfolio loss predictions,

normalised to the results for the classical approach.
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